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J. Phys. A Math. Gen. 25 (1992) 5071-5088. Rinted in the UK 

The Jordan structure of Lie and Kac-Moody algebras 

L A Ferreira, J F Gomes, P TeotBnio Sobrinho and A H Zimerman 
Instituto de Fisica Teedrica-UNESP, Rua Pamplona 145, 01405 SQa Paul0 SP, Brazil 

Received 17 June 1991, in final form 2 April 1992 

Abstract. In this paper we establish a precise relation between the structures of Lie and 
Jordan algebras by presenting a method of constructing one type of algebra from the other. 
The examples ofthe Lie algebras associated to simple Jordan algebras M:' and Clifford 
algebras are discussed in detail. The generalization o f  such arguments to infinite- 
dimensional Lie algebras in terms of Fermi fields is also discussed. 

1. Iutroductiou 

It has become clear in the past few years that a semi-direct product of Kac-Moody 
(KM)  and Virasoro algebras plays a crucial role in underlying the algebraic structure 
of physical systems possessing conformal invariance in two dimensions [l]. In fact, 
KM algebras can be thought of as having a more fundamental structure since from the 
Sugawaraconstruction [2],the Virasoro algebra canbe constructed from KM generators. 
The Virasoro generators obtained in this manner depend upon the representation of 
the KM algebra appearing in the Sugawara form, and hence upon the value of its 
central element K (see [3] for a review). 

It is a well known fact that the representations of KM algebras can be constructed 
in terms of quantum fields [3]. In particular, the quark model construction provides 
KM currents bilinear in Fermi fields, i.e. 

T Y z )  = ( i / 2 ) V ( ~ ) M ' & + ~ ( z )  (1.1) 

where M" are real antisymmetric matrices constituting a finite-dimensional representa- 
tion of a compact Lie algebra g. +"(z) ,  a = 1,2,. . . ,dim M are real independent Fermi 
fields defined on a two-dimensional spacetime parametrized by the complex variable 
z. The Laurent coefficients of (1.1) are the generators of the affine Kac-Moody algebra 
& with central element given by the Dynkin index of the finite-dimensional representa- 
tion [4] X ,  as 

KG"b=fXMcp28ab = - i T r ( M " M b )  (1.2) 

where rp is the highest root of g. 
We have a particular interest in studying representations of KM algebras for which 

the quantity X = 2K/  cp', called the level, takes unit values. These are the representations 
admitting conformal embeddings [5]. It has been shown that for g classical, i.e. SO(n) ,  
SU(n) and SP(n), level 1 representations can be obtained with M a  in the defining 
representation of g [6]. For the exceptional Lie algebras, F4, E,, E, and E8 however, 
there is no matrix representation yielding X = 1. 

0305-4470/92/195071+ 18W4.50 0 1992 lop Publishing i t d  5% i 



5072 L A Ferreira et al 

Although there are no such matrix representations for the exceptional algebras 
(apart from.G,), level 1 representations still can be constructed bilinearly in Fermi 
fields using vertex operators [7,81. These fields, however, are no longer independent 
in the sense that their operator product expansion is given by [9]  

z1/2 

4"(z)@p(s)= ( z - f ) l , 2  @'(Z)+regular terms (1.3a) 

IZI > 151 and a + p # 7. That contrasts with the operator product expansion for indepen- 
dent fields, i.e. 

Z 
~ " ( ~ ) 4 ~ ( ~ ) = 2 _ 5 S ~ ~ + r e g u l a r  terms (1.36) 

The object of this paper is to establish the existence of a more fundamental algebraic 
structure underlying the construction of Lie (Kac-Moody) algebras. This structure is 
based upon Jordan algebras which unifies (1.3a) and (1.36) as a field-theoretic version 
of a Jordan product as we now explain. 

A Jordan algebra [ IO, 1 1 1  9 is an algebra endowed with a symmetric (commutative) 
product 

PI> 151. 

u o b = h . o  a,!,€$ (!~4) 

( a Z .  b )  0 a = a 2 0 ( b  0 a ) .  ( 1 . 5 )  
A simple example can be seen by the Clifford algebra with generators ym, n = 1 , 2 , .  . . , 
N and Jordan product given by the anticommutator 

satisfying the Jordan identity or power associativity law 

y%.ye-f{r", y q = f i Y P ? ,  (!.6) 
Notice the resemblance between (1.6) and the operator product expansion (1.36). 

Further examples of Jordan algebras are provided by n x n Hermitian matrices 
over the real (R), complex (C) and quaternionic numbers (Q) denoted by MV), M'.2' 
and MY' respectively, For n = 3 there is an exceptional Jordan algebra MY' consisting 
of 3 x 3 Hermitian matrices over the octonions (03). In all these cases the Jordan product 
is given by one half of the anticommutator. When restricted to off-diagonal matrices, 
the Jordan product resembles the operator product expansion (1.3a) [9, 12-14]. 

The main point of this paper is to establish a precise relation between elements of 
a Jordan algebra and the generators of a Lie algebra. We shall present an alternative 
derivation of the Tits construction [ l l ,  15-17] which we believe will be useful in 
understanding the role of Jordan algebras in the construction of representations of 
Yn+ N.,--rl., "-2 \,:------ -Inahtoo 
R'C-'.'YV"J ',,U ... (.DVIV 'Lb*Y .Y" .  

Let 9 and L be two vector spaces and let L be decomposable as 
L =  TI+ T2+  T'+ D ( 1 . 7 )  

where each one of the three subspaces T' ( i  = 1 , 2 , 3 )  are isomorphic to 2, i.e. we can 
associate an element T' (a )E  T' to every a €9. We want to endow 9 with a Jordan 
algebra structure whenever L is a Lie algebra and vice versa. These two algebraic 
structures are related through the formulae 

[ T ' ( a ) ,  T'(b)]  =ie"Tk(a 0 b)+S9D.., ( 1 . 8 ~ ~ )  

[D.,b, T ' ( c ) ]  = T'(a.b(C)) = - T' ( (a ,  C, b ) )  (1.86) 
[Do.b, Dc,dl= Da.,b(c).d+Dc.srb(d) ( 1 . 8 ~ )  
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where '0 '  and [ , I  denote the product laws in d p  and L respectively, ( a ,  b, e ) =  
( a  0 b )  0 c - a 0 ( b  0 c )  is the associator in d p  and are elements of D which generate 
a subalgebra isomorphic to the derivation algebra of dp. For finite-dimensional semi- 
simple Jordan algebras all derivations are inner and of the form a , , ( c )  = - ( a ,  c, b )  
[l l ,  171. They satisfy the commutation relations 

a c . d l = 9 ~ , , ( c ) , d + g c , ~ q ~ ( d ) .  (1.9) 

As a consequence of the Jordan identity the generators of 9 have to satisfy [ll, 171 

9 a . . b , , + a , . , , b + 9 b . , . = o .  (1.10) 

We show that given any Jordan algebra one can construct a Lie algebra through (1.8). 
On the other hand, we give some sufficient conditions for a Lie algebra in order that 
its commutators can be written as (1.8). 

In section 3 we discuss the Clifford algebra generated by gamma matrices and the 
Jordan product given by (1.6). We show that there is a sequence of orthogonal Lie 
algebras that can he constructed out of these gamma matrices. Conversely, we show 
that the orthogonal Lie algebras B. and D. may he decomposed according to section 
2, exhibiting their Jordan structure. 

In section 4 we discuss the construction of the Freudenthal magic square out of 
the Jordan algebras MY), MY', MY' and MY) and its relation with dependent fermions. 
In section 5 we present the example of the Poincart algebra which is related to a 
non-semisimple Jordan algebra. Finally in section 6 we discuss the possible extensions 
of our arguments to Kac-Moody algebras. 

2. Relationship between Jordan and Lie algebras 

In this section we prove relations (1.8) in both directions. We first consider L to be a 
Lie algebra decomposed into 

L =  L-,+ Lo+ L, (2.1) 

rLm, L"1C L+" m, n = 0, +l. (2.2) 

with 

It then follows that L, and L-, are Abelian. In general such decomposition is obtained 
by a U, generator Q 

CO. La1 = mL, (2.3) 

which does not necessarily belong to L. The decomposition (2.1) is used in the Jordan 
pair method [18, 191 in the construction of Jordan algebras out of Lie algebras. Here 
we also make a connection of this with the Tits construction. Suppose that L possess 
an involutive automorphism U, (U*= 1) providing a one to one map between the 
Abelian subspaces L, and L-, , i.e. 

U(L,) = L-, . (2.4) 

This involution also decomposes the subalgebra Lo into even and odd subspaces, i.e. 

Lo= D +  T' u ( D )  = D a ( T 3 ) = - T 3 .  (2 .5 )  

In the cases where Q E  L, (2.3) and (2.4) imply u(Q) = -Q and therefore QE T'. 
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We denote by TI and T' the odd and even combinations according to u of L, and 

T'= L , - u ( L , )  r2 = L, + u(L,). (2.6) 

Hence the Lie algebra L is decomposed as in (1.7). Using (2.2) and the fact that u is 
an automorphism one gets 

L-, respectively, i.e. 

[ T', T'] c T* ( i # j # k )  [r', T ' I C D  
(2.7)  

[D, T ' ]  c Ti [ D, D ]  c D. 

The graded structure ( 2 . 1 )  defines another automorphism in L, namely U' defined 
by u'(L,,,)=(-l)'"Lm. Where the integers m are eigenvalues of Q, U' is realized by 
u'(L)  =exp(ilrQ)L exp(-i?r(2). The involutions U and U' commute, hence define a 
third involution, U"= uu'= u'u. The identity map together with the three involutions 
in fact constitute a Z2 x Z2 group. Associated with these involutions one can construct 
a series of symmetric spaces [20]. 

Given the grading (2.1) the involution U satisfying (2.4) is not unique. By varying 
U, we vary the subalgebra D and the subspace T3 defined in (2.5). We are interested 
in those cases where the involution is such that there exists an automorphism of order 
3, T (T'= 1 )  permuting the subspaces T', i = 1,2,3 and leaving D invariant, i.e. 

T( D) = D. ( 2 . 8 0 )  

The vector spaces TI and T2 are already isomorphic due to (2.6) and the existence of 
T implies an isomorphism among TI, T2 and T3. At this point we introduce a vector 
space d p  with elements denoted by a, b, c, . . . isomorphic to L , .  We shall denote a 
representative of an element a ~ d p  in L,  by L , ( a ) .  From the considerations above, the 
three subspaces T', i = 1,2,3 are also isomorphic to 2. We take the representative of 
a E d p  in TI to be T ' ( a )  = ( 1  - u ) L , ( u ) .  The representatives in T2 and T3 are then 
chosen to be T 2 ( a )  = T( T l ( a ) )  and T 3 ( a )  = T2( T' (o ) )  respectively. Then, we can write 
(2.8a) as 

. ( T ' ( ~ ) ) =  ~ ' + l m o d 3  ( a ) .  (2.86) 

Let us introduce a product law in dp ,  denoted by a 0 6, as follows: take the Lie bracket 
between the representative of a in TI and the representative of b in T2. As a consequence 
of (2.7), the result is an element in T3 which we define to be the representative of the 
element a ., b, i.e. 

[ T ' ( a ) ,  T 2 ( b ) ] = i T 3 ( a a  b )  (2.9) 

where the factor I has been introduced for convenience. Due to T, inis product can 
also be defined as [ T 2 ( a ) ,  T 3 ( b ) ]  or [T ' (a ) ,  T l ( b ) ] .  The fact that L, and L-, are 
Abelian implies that 

[ ( l -u)Lda),  ( l + u ) L , ( b ) l = [ ( l - ~ ) L , ( b ) ,  ( l + u ) L , ( a ) l .  (2.lOa) 

T( p )  = ~ ' i l  mod3 

We want the product defined in (2.9) to be symmetric, i.e. 

[ T ' ( a ) ,  T 2 ( b ) ] = [ T l ( b ) ,  Tz(a)l (2.lOb) 

and so, from (2.10a) we need T ' ( a ) = A ( l + u ) L , ( a )  where A is a constant. In other 
words, we need ~ ( ( l - u ) L , ( a ) ) = A ( l + u ) L , ( a ) .  In appendix 2 we discuss the condi- 
tions T has to fulfil in order to get the symmetry of the product. 
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We shall now prove that our product satisfies the Jordan identity and hence defines 
a Jordan algebra. From (2.9) and the Jacobi identity we find 

T'((02, b, a ) )  = i [ [ [T- ' (a) ,  T1(a)l, T2(a)l, T-'(b)l. ( 2 . 1 1 )  

When calculating (2.11), we have to keep in mind that, by definition (2.9), the result 
of an operation must be brought (using T) to one of the subspaces T1 or T2 before 
operating with it again. The quantity M,, , (a)  = [[ T 3 ( a ) ,  T ' ( a ) ] ,  T 2 ( a ) ]  is an element 
of D and being so is invariant under T. Using this fact we conclude that M,, ,  = M312 = 
MZ3, .  It then follows from the Jacobi identity that they vanish and so does (2.11). The 
vector space 2 endowed with the product defined by (2.9) is then a Jordan algebra. 

According to (2.7) the Lie bracket between two elements of the same subspace T' 
is an element of D. Due to the triality T, this is independent of i. We then define 

Dole = CTi(a), T ' ( b ) l  i =  1 ,2 ,3 .  (2.12) 

Therefore using (2.9) and the triality T we establish ( 1 . 8 ~ ) .  Now using the definition 
(2.12). ( M a )  and the Jacobi identity we find that D.,h satisfy (1.86) and ( 1 . 8 ~ )  (when 
choosing a convenient value for i). 

Except for the possibility of the existence of elements of D which are not of the 
form (2.12) these are all the commutation relations for L. In any case, the elements 
"',$ C U I I D L I I U K  'l 3U"'lLSG"L.a U1 U W l l L C l l  I C t l l L G i D  Ll lC UCllYalluLI a,gcv,n U, LllC J V l U P l l  

algebra 2. We have then shown that any Lie algebra possessing the grading (2.1)-(2.2) 
and automorphism U and T defined in (2 .4)  and (2.8) respectively, has a Jordan 
structure in the sense of (1.8). 

Conversely we can prove that relations (1.8) can be used to construct a Lie algebra 
out of a Jordan algebra. Let 9 be an arbitrary Jordan algebra and L be a vector space 

isomorphic to 2. The inverse construction is proved by showing that the product [ ,] 
defined by (1.8) satisfies the Jacobi identity. Using the fact that T'(0)  = Do,. = D,o = 0 
one can easily check that the Jacobianst j ( T ' ( a ) ,  Db,c, D+) and j(Da,b,Dc.d, De,,) 
vanish as a consequence of (1.9). Similarly j ( T i ( a ) ,  T'(b) ,  Dc,d) vanishes due to the 
fact 

j ( T ' ( a ) ,  T'(b), T k ( C ) ) = i E C ( D . ~ b . c f D c . . , b + D h D c , . ) .  (2.13) 

Although the derivation algebra 9 satisfies ( l . lO) ,  the elements De,b E D  do not, 
necessarily. In fact, A(a, b, c)  = Do+ + D,. , ,  + DhDc,u generate a central element in the 
sense that it commutes with T ' ( a )  and Da,h. Due to the Levi-Civita symbol on the RHS 
of (2.13), the subspace D +  T i  (fixed i )  is a Lie algebra even when the quantity A(o, b, E )  

does not vanish. The subalgebra D is then homomorphic to the derivation algebra 9 
and A(% b, c )  lies in the kernel of such homomorphism. The vector space L is a Lie 
algebra only if D and 9 are actually isomorphic. Since the subspace A generated by 
A(a, b, e )  is an Abelian ideal of D, the factor algebra d= D/A is isomorphic to 9. 
Consequently the vector space L= TI+ T2+ T'+ b is always a Lie algebra. The 
quantity A(a, b, c )  is in fact a 3-cocycle. 

In the cases where the Jordan algebra has an identity element the automorphism 
(2.8) is realized by 

T(/) =gi&?2/&7;'&?;' / € L  (2.14) 

n ^^^^.: ....- " -..L^I..^L-^ ^C n .__I-:-< r L ^  A - 2  __^. :..- ̂ ,^^I-_^ -'-.I-" ,--A"- 

with 1 decnrtlposition given by (I.?), where T', i =  !,2,3 11e three vec!or sp2res 

is a derivation, i.e. 9 0 , h ( ~ ~ d ) = 9 . , b ( ~ ) o d + ~ ~ 9 . , b ( d ) .  Finally one gets 
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where g, = exp(iaT'(1)/2). In addition, the representatives of the identity generate an 
SU(2) subalgebra commuting with D, i.e. 

[ T'(1), T'(1)] = i a 'Y(1 )  (2.15) 

[Do ,  p ( 1 ) 1 = 0  (2.16) 

since (a, 1, b) = O  for any a, b € $ .  We can define a bilinear form on d p  by restricting 
the Killing form of L to the subspace Ti, i.e. (a, b)=Tr(T'(a)T'(b)), which, due to T, 

is independent of i. Notice that any automorphism U of the Jordan algebra induces, 
via (1.8) an automorphism 6 of L by 6 ( T ' ( a ) ) =  T'(u(a)),6(D..,)=D,,,,,,,,,. The 
relation between Lie and Jordan algebras given by (1.8) is known as the Tits construction 
[ 11,151 (more precisely the first construction, see [ 111 for details). The SU(2) subalgebra 
(2.15) is not necessarily the same as the one appearing in the Tits second construction 
as the derivation algebra of the quaternions. 

L A Ferreira er nl 

3. Clifford algebras and orthogonal Lie algebras 

The simplest and most familiar example of a simple Jordan algebra consists of 
generators y', (I = 1,. . . , N of a Clifford algebra with product given by the anticommu- 
tator (1.6). In this case the relations (1.8) read 

[T'(y"), T'(yp)I = ia'kS"PT*(l)+6'D,,P ( 3 . 1 ~ ~ )  

[T'(1), T'(y")] =ie'*T'(y") (3.lb) 

[Dm,e, T'(yP)] = SB+"'(y") - 6a'.pT'(ya) (3 .1~)  

[Do.pr T (1 )1=0  (3.ld) 

[Do,p, D1,6]=SeyD,,6 -S"yDe,s+6a6D,.~, -6"6D7,e (3.le) 

where we have used (y-, yp, yP)=S"pyp-Speyy, and 9mP( l )=0 .  The element D,.= 
does not appear on the RHS of (3.lb) since we have assumed the ideal A has been 
divided off from D. According to the arguments of section 2, the vector space L= 
T'+ T2+  T'+D endowed with the operations (3.1) is a Lie algebra. 

The Lie algebra D is easily recognizable since (3.le) defines the special orthogonal 
algebra SO(N) .  Notice that (3.la) for i = j  resembles the construction of SO(N)  
generators bilinearly in gamma matrices. Denoting DNfl ,  o1 = iT'(y") we see that (3.10) 
and ( 3 . 1 ~ )  for i = j= 1 are written in the same form as (3.le). Therefore the subspace 
D +  T1(y"), (I = 1,. . , , N is then the Lie algebra SO(N+l ) .  Adding the U, generator 
TI( 1) we get the non-semisimple Lie algebraO( N +  1). Analogously denoting DN+*,= = 
i P ( y " j  and D ~ + ~ . ~ + ~ = ~ T - ( I )  we can easiiy check that the subspace ~ + P ( y ' j +  
T2(y")+ T'(l) constitute the Lie algebra SO(N+2).  Finally denoting DN+',- = 
iT'(y"),DN+2,N+3=iT'(1) and DN+,,N+3=-iT2(1) we find that the L=SO(N+3).  
Therefore the construction explained in section 2 provides, for the case of the Clifford 
algebra, a series of four orthogonal Lie algebras. 

We now want to apply the inverse construction of section 2 to the orthogonal Lie 
algebras and obtain an underlying Clifford algebra (1.6). A practical procedure in 
decomposing a simple Lie algebra L into the form (2.1) is by taking the U, generator 
Q in (2.3) to have the form 

Q =2h0.  Hf 0'. (3.2) 
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where a. ( a  = 1, . . . , rank L )  is a simple root of L and A, its corresponding fundamental 
weight. They satisfy 2a , .  Ada:  = amb. The generators H, ( i  = 1,. . . , rank L )  constitute 
the Weyl-Cartan basis for the Cartan subalgebra of L and they obviously have zero 
grading WRT Q, 

[ Q ,  f & l = O  (3.3a) 

i = 1 , .  . . , rank L. The step operators satisfy 

[ Q ,  Em]= (2Aa .  a / a : ) E ,  = n,E, (3.36) 

where n. are the integers in the expansion a = n.a.. The highest grade of Q is given 
by the coefficient m. of aa in the expansion of the highest root q (p = maan),  Therefore, 
Q has integer eigenvalues varying from -mm to ma and hence it decomposes L into 
(2m.+1) subspaces. If we now want to decompose L as in (2.1).  we have to choose 
A< such that m. = 1 .  For the orthogonal algebras SO(2r) and S 0 ( 2 r + ! )  the highest 
root isgivenby a,+2a2+...+2a.-2+a._l+a. and a , + 2 a , + 2 a 3 +  ...+ 2a.  respec- 
tively. So, in order to construct the Clifford algebra (1 ,6) ,  for both cases we have to 
choose Q in the direction of A , .  The other two possibilities arising when L =  SO(2r) 
provide the Jordan algebras ME', for r = 2 N  This example will be discussed in the 
next section. 

The subalgebra Lo is therefore generated by all Cartan subalgebra generators Hi 
together with the step operators E, for roots a not containing a, in their expansion 
in terms of simple roots. The Dynkin diagram for Lo is then obtained by deleting the 
point corresponding to a, in the Dynkin diagram of S O ( N )  ( N = 2 r + 1  or 2r, [21], p 
58) .  Consequently the orthogonal algebras are decomposed as 

(3.4) 
where the u ( i j  factor is generated b y  Q. me subspace i, (L-,j is generated by aii 
positive (negative) step operators for the roots containing a ,  in its expansion. In terms 
of an orthonormal basis e, ( i  = 1 , 2 , .  . . , r )  the roots of the orthogonal algebras are [20] 

rootsofS0(2r+l )={*e i*ej ,*e i , i , j= l ,2  ,..., r )  (3.5a) 

roots of S 0 ( 2 r ) = { * e j * e j ,  i , j =  1 , 2 , . .  ., r}. (3.5b) 

In both cases the fundamental weight A I  is equal to e,, and since a f = 2 ,  we have [21] 

Q = e , H .  (3.6) 
Therefore the subspace L, is given byt 

LSO(Z'+l'= 1 (3.7a) 

LSO'2''= {E. , , , , ,1=2,3 , . . . ,  r ) .  (3.76) 

In both cases the subspace L-, is generated by their corresponding negative root step 
operators. 

The involution (2.4) in the case of the orthogonal algebras is an inner automorphism 
associated to the product of the Weyl reffections through the roots e ,  + e, and e ,  -e, .  
It is given by 

~ ( T ) = e x p [ i ~ ( S z ( e t + e , ~ + S , ( e t  -e,))lTexp[-i~(Sz(e,+e,)+S,(e,-e,))l ( 3 . 8 )  

S O ( N )  = L, + L-, + S O ( N - 2 ) +  u(l)Q 

{ E e , ,  E., , ,  , I = 2 ,3 ,  . . . , I 1  

t Formally, these are generators of the complex algebras B, and D, and not of the compact real forms 
S 0 ( 2 r + l )  and SO(2r). The decomposition (3.4) is made, in fact, in the complexification of the orthogonal 
Lie algebras. 
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where S 2 ( a )  is defined in (3.14). One can easily check that u ( Q )  = -Q. It then follows 
from (2.3) and the fact that U is an automorphism that u ( L , )  has grade -1. Since U 

is of order two, it satisfies (2.4). 
Using the relations among the cocycles obtained in the appendix, one gets from (3.8) 

L A Ferreira et a1 

u ( e , H )  = - e 3  (3.90) 

(3.96) 

(3.9c) 

(3.9d) 

u ( E , ) =  E ( e , + e , , - e , ) E ( e , - e , , e , ) E - ,  (3.9e) 

(3.9f) 

(3.9g) 

u ( E e + , )  = d e l *  el, --e,-e,)E(-e,* el, - e ,+e , )E- . ,+ ,  

u ( E , , , , )  = €(e,* el, - e , - e , ) e ( e , - e , ,  -e l*e,)Ke,+e,  

where I = 2,3, . . . , r - 1. The generators elH, E +e, and E be,&em, I, m = 2,3, . . . , r - 1, are 
ixvar;.axt under c. 

According to (2.5), the subalgebra Lo = SO( N - 2) x U( 1) split into D + T3.  For 
N = 21, the subspaces are given by 

Dso'2"= {elf€;  E++-; E , , , ,  +u(E-+, ) ;  1, m = 2,3,. . . , r - 1) 

T;0(2r) = {Q,  e ~ ~ , E ~ , * ~ , - u ( E = , * ~ , ) ;  l = 2 , 3 , .  . ., r-1) 

and for the case N = 2r+ 1 the subspaces are 

(3.10a) 

(3.10b) 

gs0'2'+1'= (D"'2'' , E , + 4 E e , ) ,  E,, , ,  1=2,3,. . . , r-11 

7.S0(2.+1) = { T;0(2r) , E e , - u ( E e , ) } .  

(3.11a) 

(3.11b) 

Notice that DSo(") is the algebra SO(2r -3 )  since the generators E ,  **, + u ( E , , , )  
are the step operators for the short roots *el .  On the other hand DSo'2'+li is the algebra 
SO(2r-2)  since E , +  u ( E , )  together with elH generate the Cartan subalgebra, and 
suitable linear combinations of the generators E**, and E. , , ,+  u ( E , , , )  are the step 
operators for roots *e, f e,. In both cases the subspace T3 has the same dimension as 
I . .  in (7.7). 
-1 --- \--. , .  

Consider the inner automorphism defined as 

7(T)=g(e,+e,)g(el-e,)Tg-'(el-e,)g-'(e,+e,) (3.12) 

where 

(3.13) 

(3.14) 
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Using the relations in appendix 1, one can check that T cyclically permutes the subspaces 
T, ( i = l , 2 , 3 ) ,  i.e. 

(3.15a) 

(3.156) 

(3.15c) 

~ [ ( 1  -u)E~,*~, I  = -i(l + u ) E , , + ,  (3.160) 

T [ ( I + U ) E ~ , * J  =i(e,*e,) FI (3.166) 

T [ ( e l * 4  H1=(I-u)Ee,*., (3 .16~)  

T [ ( ~ - U ) E , , , , , I = - ~ ( ~ + ~ ) E ~ , , ~ ,  (3.170) 

~ [ ( l -  u ) E . , ]  = -i(l + u ) E e 8  

~ [ ( 1 +  u ) E . , ]  = i&(e,, e, - e,)(] -u)Ee, 

~ [ ( 1  -u )E , l=  .(e,, e, -e r ) (1  - u ) E e ,  

~ [ ( l f  u ) E &  = ie(e: f e,; -e: + e c ) ( l  -u)Ebie, (3,17h) 

~ [ ( 1  -u)E& = E(e,*el, -e,+e,)(l - U ) E ~ , + ~ ,  (3 .17~)  
where I = 2 , 3 , .  . . , r - 1 and T leaves the elements of Ds"2'' and DS0(*'+'' invariant. 
Therefore this automorphism satisfies the requirements of  section 2 and according to 
the arguments given there the Lie algebras SO(2r) and S O ( 2 r f l )  possess a Jordan 
structure in the sense of (1.8). The Jordan algebra obtained, from the product law 
(2.9) is indeed the Clifford algebra (1.6). The representatives of the identity and the 
y-matrices in the subspace TI are given by 

(3.18a) 

(3.186) 

(3 .18~)  

--I 
T ' ( Y , I - ~ = T  (1 -u)(Eel+e,+ WE<,-#,) (3.18d) 

where I = 2,3,  . . . , r - 1, and o1 is the product of cocycles appearing in (3.9f), i.e. 

= &(e,+e:, -e,- e,)E(-e,+e,, - e , + e , )  

= E (e, - el, -e, - e.)& (-e, - e,, -e, +e,). (3.19) 

The equality between the product of these cocycles can be easily checked using the 
relations of appendix 1. 

For the case of SO(Zr+l) there is an additional y-matrix represented in TI by 

T ' ( Y ~ , - ~ ) =  (&(e ,+% --el)der. e, - e , ) ) ' " ( E ~ , - U ( E = , ) ) / Z .  (3.20) 

1 he representatives in the subspaces i' and i' are obtained by appiying T and 2 
respectively to the generators quoted above. That this choice of representatives does 
provide the algebra (1.6) can be easily verified by checking directly into (3.1) and 
using the relations displayed in appendix 1. 

The step operators satisfy the Hermiticity condition E L =  E-=.  Therefore, from 
(3.9d) one observes that the square root of the product of cocycles in (3.20) guarantees 
the Hermiticity of T ' (Y~,_~) .  The generators introduced in (3.18) are also Hermitian, 
Since the triality T, defined in (3.12), is a unitary transformation it follows that the 
representatives in the subspace T2 and T3 are also Hermitian operators. Consequently 
the relations (1.8) for these examples are the commutation relations for the compact 
simple Lie algebra SO(2r) and S0(2r+ 1) .  

- 
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4. Jordan algebras and the Freudenthal magic square 

In this section we shall apply the construction of section 2 to the Lie algebras appearing 
in the third line of the Freudenthal magic square [15-171, namely SP(3), SU(6), SO(12) 
and E, and show that they are related, via (1.8) to the simple Jordan algebras MY', 
MY', MY' and MY' respectively. These are the Jordan algebras of 3 x 3 Hermitian 
matrices over the real, complex, quaternionic and octonionic numbers with product 
given by half of the anticommutator. We will do that exploring the fact that SU(6), 
SO(12) and E, are obtained by matching g,=SP(3) with g2=SU(3), SP(3) and F4 
respectively. For more details about matching of Lie algebras see [8] and [9]. It is 
straightforward to generalize our results to show that the algebras SP(n), SU(2n) and 
SO(4n) are related to the Jordan algebras M!,", Mi2' and MC' re'spectively. In fact 
some of these results have already been discussed in a previous paper [14]. 

The roots of the Lie algebras L o n  the third line of the magic square can be written, 
using the matching and the notation of [8] as the long roots of gl=SP(3) i.e., 
* f i e j ,  i = 1 , 2  and 3, the long roots CJL of g, together with (+e , *e , ) / f i+n , ,  (*e,* 
e3)/fi+n, and ( * e l * e 3 ) / a + 0 3  where ni i =  1, 2 and 3 vanish for L=SP(3) and 
correspond to the orbits of SU(3), SP(3) and F4 for L=SU(6), SO(12) and E, 
respectively. The set of long roots C J L  and the unit length vectors in R j  are given 

L A Ferreira et a1 

".-.-A-A:-~ +A r h n  -n+n+:n- n F  rP1 h . 3  
LLL'C"."."~ L" L1.C L I U L P L I " L I  "1 L Y J  ", 

(a)  for g, = SU(3), C J L  vanish and 

= t * (e, - e,)/&} and 
(4.la) 

ol = {*(e4- e d / a }  
n3 = * (e4- e 6 ) / d }  

nl = t ( * e 4 * e 5 ) / d }  

n3={(*e4*e6)/J2} 

(b) forg,=SP(3), C J L = { i d e j , i = 4 ,  5 a n d 6 ) a n d  

n2= t(*es*e6)/&} and 
(4.lb) 

(e) forg2=F,,CJL={fei*ej, i ,j=4, 5, 6 and 7) and 

n,={*ei , i=4,5,6,7} = {(*e4 * e,* e,* 4 / 2 L V e n  and 

a, = {(*e4* e,* e,* e7)/2hd (4 .1~)  

where n2 and n3 contain an even and odd number of minus signs respectively. 
We shall now show that the algebras Sp(n), SU(2n), SO(4n) and E7 can be 

decomposed according to the structure of section 2. As in section 3, the U, generator 
Q has the form (3.2), and the fundamental weights A. are chosen as follows: An for 
Sp(n) and SU(2n), A,"-, or AZn for SO(4n) and A, for E,. The index convention 
correspondtotheexpansionofthehighestrootas2nlf2al+. . . t2a, - ,+an;  a ,+a2+  
. . .+ a2,,; aI +2a2+.  . .+2al,-2+ a2.-,+ aZn and 2a,  +2a,+3ru3+4a4+3a,f2a,+ a, 
for Sp(n), SU(2n), SO(4n) and E, respectively. Again the subalgebra L, is obtained 
by deleting the point in the Dynkin diagram of g corresponding to the chosen Aa ([Zl], 
p 58). They are Lo = SU( n) x U,, SU( n )  x SU( n )  x U,, SU(2n) x U,, E, x U, according 
io g = a r ( n ) ,  au(Ln), a q r n ,  anu =, rcspc~uvcry. UL iau LUG ~ u u a r ~ w ~ o ~  LO LLUUIC, 

except for the U, factor, are those appearing in the second line in the Freudenthal 
magic square. For simplicity, from now on we shall only consider n = 3. The second 
and third lines are constructed by matching the root system of S U ( 3 ) l a  and SP(3) 
respectively with SU(3)/fi, SP(3) and F,. The simple roots of SP(3) are those of 

--, \ I.., \ In,. ~, .-> r _^^_^^.:__^I_. r.. F"^r .L̂  ^..I.^,^^I.-^" , -I.,...- 
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S U ( 3 ) I a  together with d e , .  Then the fundamental weight An in (3.2) (which is 
orthogonal to all roots of Lo and d e 3 , A a = l )  for all entries in the third line is 
A. = (e, + e,+ e , ) / f i .  We now define, following the notation of [8,9], the Abelian 
subspaces L, and L-, (see (2.3)) 

1 -  - {E(=,+q/Ji+n, E(ei+e,)/Ji+n,, E(O,+O,)jJi+n ' ,EJi=, , i=l ,2 ,3} 

with L_: = ( L : ) +  where 0; a: and 0; are defined in (4.1). 
The vectors ( e l + e z ) / f i ,  ( e z + e 3 ) / d  and ( e , + e , ) / d ?  are in fact short roots of 

SP(3). The automorphism (2.4) mapping L, into L, can be constructed out of three 
Weyl reflections generated by the long roots of SP(3j namely: d e , ,  &ez and &,. 
It is defined as 

(4.2) 

where uX(L)  = eiqs~cx)L e-i*S2(x) and S,(x) = (E" - E-")/2i. It therefore follows, using 
the relations of appendix 1 

4 E  A',) = -E-" 2 =, (4.3a) 

u( e? H )  = -e,H (4.36) 
u ~ ~ ~ , .  . , .,_ ,, .... 

4 L )  = U&,(UA*(ufie, 03)) 

,,j =pF7;E(  :*,-v,;/&G,, (4.3C) I ,  

where 

"..A t - - + ?  i ; ~ - i  1 2 u r n  h . d  rlnnntarl +ha ,.-h:+- n:.m.. :.. i* 1 )  n -n  
all" 5, ,,--., ' , , , R - ' , L , - . .  . I*  ..U" "LI IVLG" LLLC ",".,I 6 , " L L l  111 ,-..I, a1 ",-",z, 
O2 = Clz3 and n, =a,, (see paragraph preceding (4.1)). Since the Weyl reflections in 
(4.2) commute among themselves, we get u2(L)  = 1. 

Apart from mapping L, into L-, the automorphism U defined in (4.2) also split 
Lo into D+ T, such that u ( D )  = D and U (  7,) = - T,. We get 

T3={(l-U)E(='-e,)'&+". , d e , H ,  i, j = 1,2 and 31 

so that dim T3 = dim L,. According to section 2 the identity elements belong to the 
centralizer of D. In fact there is a SU(2) subalgebra commuting with D generated by 

and 

e ,  + e>+ e, 
73(1)=(  ). 

satisfying (2.15). 
Let us now define T by 

(4.4c) 

T(T)=exp (-; - T'(1) j exp (-iv -Tz(l)  ) Texp (i2" - T2(1) ) exp (i2" - T  I (1) ) . (4.5) 
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It is then straightforward to obtain 

L A Ferreiru et a/ 

T ( ( ~ - - ( T ) E ~ ~ $ ) =  -i(l+r)EJi*c 

T (  ( 1  + w)EheI) = ifie,H 

T ( J Z e , H ) = ( l - ( T ) E h * f .  

(4.60) 

(4.66) 

( 4 . 6 ~ )  

Also using the relations among the cocycles, given in appendix 1, and the fact that (T 

is an auromorphism of i, ii is tedious but straightforward to show ihai 
r((l - (T)E(e,+--,i)/Ji+n,,) = -i(l +(T)p=,+=,)/fi+n,, (4.7a) 

We denote the elements of the Jordan algebra MI"' by 

0 W O  0 0 0  o o w  

a ,2=  (o  I? 0 0 o)  U = = ( :  ; ;) a..=(; : :) (4.8) 

where w and its conjugate I? represent real, complex, quaternionic and octonionic 
numbers according to n = 1, 2 . 4  and 8 respectively. We can check that the following 
choice of representatives 

T1(ai) = ( I  -a)~+ ~ ~ ( a < ) =  T ( T ' ( ~ $ ) )  and T ' ( a , ) = ~ ~ ( T l ( a ~ ) )  (4.9a) 

and. 

=(l-(T)E('i+=i)lJi+n, (4.96) 

r 2 ( a s )  = T (  T'(a,))  and T3(a,)=T2(T'(ag)) (4.9c) 

reproduces the multiplication table of the Jordan algebras (4.8) via (1.8). 
Notice that the Jordan subalgebra generated by the elements ai ( i  = 1,2,3)  is related 

via (1.8) to the simply laced subalgebra g, = SU(2) X SU(2) x SU(2) common to Sp(3), 
SU(6), SO(12) and E,. In all these cases g, is generated by the step operators 
together with the Cartan subalgebra generators f i e t .  H, i = 1 , 2  and 3. 

5. The Poiour6 algebra 

Another example of our construction is provided by the Poincart algebra. The commuta- 
tions relations are 

r P. Y . I =  i f i . .~.  

[Po, Ki]=iP; 

L- I ,  --,, .-y U 
r r  r i - - i r ~ r .  

[J;, K,] = ieUkKk 

Ldi, dj, - . " U P *  

[ K j ,  K,] = -ie& [ J i , P o l = O  

[Ji, 41 =iegkPk [P,,P"I=o 
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where Jf, K; and P, are the space rotations, boost and spacetime translations generators 
respectively (i, j, k = 1,2,3 and p, U = 0,1 ,2 ,3) .  

Taking the generator Q in (2.3) to be J,, we decompose the PoincarC algebra as 
in (2.1) with Ln={Jl,  K3,P3,Po), L , = { J , + i J 2 , K , + i K I , P , + i P 2 ]  and L _ , = L : .  The 
automorphisms U and T are given by 

T )  e'"JiT e-*+ (5 .2~1)  

dT)=exp(- id , /Z)  exp(-irJ2/2)T exp(irJ2/2) exp(irJ,/2). (5.26) 

One can easily check that these automorphisms fulfill the requirements of the construc- 
tion explained in section 2. Therefore according to the arguments given there the 
Poincari algebra is related to a Jordan algebra via equations (1.8). Such Jordan algebra, 
has an identity element 1 and is given by 

Yr Ys =€!,,I r, s = 1 , 2  (5.3) 
where 

..=( - 1  0 o). 
(5.4) 

One can check that this is indeed true by writing the relations (5.1) in the form 

T(1)- J, T ( Y I ) =  Ki T d Y 2 )  = p; (5.50) 

(1.8) using the following choice of representatives of the Jordan elements 

and 

D?,,.,*= -iPn D,.,,=O r = l , 2 .  (5.56) 

The relations (1.80) and (1.8b) can be checked, in this case, using the fact that all 
associators vanish, except ( y 2 ,  y , ,  y,)  = y2. The algebra (5.3) is not semisimple since 
y2 generates a solvable ideal. This is a consequence of the fact the Poincart algebra 
is not semisimple. One easily sees that the Jordan subalgebra generated by 1 and y, 
is semisimple and it is related, via (1.8), to the Lorentz algebra. Defining 

(5.6) 

one gets 

y+a y - = o  Y* 0 Y2 = Y 2 / 2  y:=o. (5.7) 
2 

y*=y*  

Therefore y2 and y+ (or y-)  generate a non-semisimple subalgebra of (5.3) without 
identity. Such subalgebra is related, via (]A), to the subalgebra of the Poincari algebra 
constituted by the translations P,. and the SU(2) generated by 

J, + iK, 
N . = -  i = l , 2 , 3 .  

I 2  

This is an example where the equations (1.8) work for a Jordan algebra without identity. 

6. Kac-Moody algebras and Fermi fields 

We have related Jordan algebras to the construction of Lie algebras and shown that 
they possess a more fundamental structure in the sense that they can be thought of as 
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building blocks for constructing certain Lie algebras. These Lie algebras, in turn, inherit 
the algebraic properties of the Jordan algebra. A similar picture can be found in 
constructing Kac-Moody algebras. The building blocks in this case are Fermion fields 
and their realization in terms of vertex operators is the most natural setting to be 
connected to the examples shown in sections 3 and 4 as we now discuss. 

L A Ferreira et al 

Let Q ' ( z )  be the Fubini-Veneziano vector field 

QJ!z)=qJ-ip'!n(z)+i r_ Q $ " / n  (6.1) 
n+0 

where [ab,a' . ]=mSv8m+..o and [q',p']=iS". 
The vertex operator is given by 

(6.2) 
where the colons denote normal ordering in the sense that a:, n > 0 are moved to the 
right of those with n < O  and pi to the right of q i  (see [ 3 ]  for a review). The vertex 
operator (6.2) is a conformal field of weight r 2 / 2  with respect to the free bosonic stress 
energy momentum tensor for Q'. Its Fermionic character arises whenever r2 = 1 and a 
pair of real Fermi fields can be defined as 

(6.3) 

the anticommutation relations for the $ 'S .  Information about dependence among Fermi 
fields is obtained from the singular part of the operator product expansion 

(6.4) 
A set of 2n independent real Fermi fields, I)' satisfying ( 1 . 3 0 )  is associated to  the 
orthogonal set of unit length vectors +ei, i = 1 , .  . . , n, as 

U*'i(z)c,, = ($2i+'(z) Ti$2i(z))/fi. (6.5) 
These are considered fundamental building blocks for constructing Kac-Moody gen- 
erators (with conformal weight 1, or r2 = I ) .  Indeed for SO(2r) they can be constructed 
bilinearly in Fermi fields (6.5),  i.e. the step operators are given by 

E*',*'I = U"~(z)c,,,  U * ' ~ ( z ) c ~ , ,  (6.60) 

u ~ ( ~ )  = Zr2/2:eir.Q(rl. 

Ue(z )ce  = ($'(z) - i$-'(z))/J2 
where ce 2re fcxtio2. ofp' (Y'eir? f2ctor.) xcessary to provide the ccxect Gg-3 i:: 

v ( ~ )  ,y'(~) = z 1 / 2 ~ 1 / 2 ( z -  C)"':e'=Q(.l+i.'Qlsl. .. 

and the Cartan subalgebra generators by 

eiH(z) = ize, dQ(z)/dz = :U',( z) U'c(z): (6.66) 

where the open dots denote Fermionic normal ordering (see [ 3 ]  for a review). Compar- 
ing (6.6) with the representatives of the gamma matrices in (3.18), we find that the 
combinations U''+ U-'!, I = 2, .  , . , r - 1 play the role, in the subspace T , ,  of 2r -4 
gamma matrices while U", characterizes y2,-3 and the identity 1 in the same subspace 
with product given by the most singular part of the operator product expansion (1 .30 ) .  
The other Fermi fields related to the even and odd combinations of U'b and U P  
characterize the subspaces T, and T2. For S O ( 2 r f  I )  the extra short root step operators 
associated to +ei are constructed [ 8 ]  as 

E*" = U " ~ ( Z ) C , , ~ Y ( Z )  i = l , . .  . , r 

where Y is an extra Fermi field independent of those defined in (6.5) and represent 
in T,, the additional gamma matrix defined in (3.20). 

Similarly to the description above, Fermionic vertex operators can be also construc- 
ted out of non-orthogonal unit length vectors. Consider for instance those displayed 
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in sli in (4.1). Within each orbit the operator product expansion (6.4) describes a set 
of independent Fermions (since the unit length vectors are either parallel, antiparallel 
or orthogonal). When considering vectors in distinct orbits, say nj and slj ,  ( i  # j) the 
operator product expansion (6.4) acquires a square root branch cut as in (1.3b).  This 
provides a realization of dependent Fermions whose properties are crucial in constmct- 
ing level 1 representations of Kae-Moody algebras [ 8 ] .  Again Kac-Moody generators 
are defined to be bilinears in such fields. 

From (4 .9)  we find that in the subspace T, the representatives of the off-diagonal 
elements of the Jordan algebra MY' decomposes into (1 - U )  U''e+'i"fi which represents 
the position where the non-zero entries of a, lie, and U"*i describes the embedded 
division algebra. Indeed they do realize the algebra of the real, complex, quaternionic 
and octonionic numbers with product defined as in [ 9 ] .  The generators corresponding 
to the diagonal part of MY' can be obtained, in terms of Fermions, squaring the 
off-diagonal generators a ,  and using (1.8).  

7. Conclusions 

We have accomplished a relation between certain Lie and Jordan algebras. An attempt 
to extend such a relation to Kac-Moody algebras is proposed in terms of Fermi fields. 
Given a set of Fermi fields satisfying (1.3a) and (1.36) we are now able to constmct, 
following the identification discussed in section 6, certain Kac-Moody algebras. Fur- 
ther, the examples discussed in sections 3 and 4 provide from (1.8) an underlying 
Jordan structure. Moreover, ( 1 . 8 )  is universal whether Jordan or super Jordan algebras 
are concerned [22] .  When extending to super Kac-Moody algebras it was shown in 
[22] that the supersymmetric counterpart of the independent Fermi fields are the 
so-called symplectic bosons used in [23] .  

We should also like to mention that the fourth line of the Freudenthal magic square 
actually correspond to a generalization of relations (1 .8)  in which instead of three we 
have seven subspaces T,, i = 1 , .  . . ,7 corresponding to the imaginary units of an 
octonion. The construction is based upon decomposing the exceptional Lie algebras 
Fa, E,, E, and E8 according to two U, generators. 

We believe that our results may provide new insights towards constructing new 
representations of Kac-Moody algebras beyond those obtained from the quark model 
and the vertex operator construction [ S I .  
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Appendix 1 

The commutation relations for a simple Lie algebra L, in the Chevalley basis, are given 
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by [211 

[H.,  %I=O a, b = l , 2 , .  . . , rank L (Al.1) 

[ H a ,  Eel= (2% ’ a / a t ) E ,  (A1.2) 

( s + l k ( a ,  P)E,+, if a + p  is a root (A1.3a) 
[ E - ,  E , ]  = H,  = n.H. i f a + P = O  (A1.3 b) 

[ o  otherwise (A1.3~)  

where a. are the simple root of L, n. are the integers in the expansion ala2 = naaa/ai ,  
and q is the highest positive integer such that ,8 -qa (or a - q p )  is a root. The cocycles 
&(a, p )  take the values *1 and are obviously antisymmetric 

(A1.4) 

The structure constants of L are completely determined from its root system except 
for the cocycles which are found by using Jacobi identities. If a, p and y are ronts 
adding up to zero, the Jacobi identity for their Corresponding step operators yield 

40, P )  = - d P ,  a ) .  

&(a, P )  = E ( @ ,  Y) = E(?,  a )  a t p  t y =O. (A1.5) 

Further relations are found by considering Jacobi identities of three step operators 
corresponding to roots adding up to a fourth root. Except for some cases occurring 
for the algebras C .  and F,, the Jacobi identity for three step operators corresponding 
to non-proportional roots a, P and y such that a + + y is a root, has only two terms. 
The reason is that the sum of a given pair of roots, let us say a t  y, is not a root. In 
such cases the Jacobi identity implies 

(A1.6) 

For the algebras C ,  and F4 there can exist three short roots e, f and g such that 
the sum of any two of them and e + f + g  are roots. This happens when, let us say, 
e . f = O  and 2 e . g / g z = 2 e .  f /g’=-l .  The three terms of the Jacobi identity for the 
corresponding step operators are non-vanishing and that implies 

d e , f ) E ( e + f ; g ) = E ( g ,  e ) & ( f , g + e ) = & ( f ; g ) E ( e , f + g ) .  (A1.7) 

From the Jacobi identity for the step operators E,, E-,  and E,,,, with 1 S n s p ,  
where p is the highest integer such that p + p a  is a root, one obtains p relations 
involving the cocycles. By adding them up one obtains 

&(a, P ) E ( a + P ,  Y ) =  E ( &  Y ) & ( a ,  8+ Y). 

&(a+p, - a ) E ( a , p ) = - l  

Then using (A1.5) 

&(a, p )  = -&(-a, - P ) .  (A1.8) 

This relation implies the mapping H ,  + -Ha and E, + -E--  is an automorphism of 
order two of the Lie algebra L. 

Appendix 2 

In this appendix we discuss the conditions the automorphism T defined in (2.8) has 
to satisfy to guarantee the symmetry of the product law (2.9) (i.e. condition (2.lOb)). 
As discussed there, T has to obey ~ ( ( l - u ) L , ( a ) ) = h ( l + u ) L , ( a )  for some constant 
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A. The mapping between TI and T2 defined by T can he described generically by a 
matrixMas~((l-~)L,(a,))=M,.(l+u)L~(a~),whereL,(a,),m=1,2, ..., dimLI 
is a basis for L, . However one can always choose a basis where M is diagonal, i.e. 

~((1 -u)L,(a,))=h,(l+u)L,(a,). (A2.1) 

Such diagonalization can be performed, in general, by using the irreducible components 
of the representation of D in L, as follows. The subspace L, (or L- , )  constitute a 
representation of the subalgebra D (see (2.2) and (2.5)) 

[ D ,  L,(am)l= R,.(D)L,(a,) .  ( A 2 4  

Since D is invariant under U, 

[D, ( l*~)L, (o , ) l=R, . (D)( l*a)L, (n . ) .  (A2.3)  

But since it is also invariant under T, 

7([D,(1-u)Ll(a,)I)=M,.[D, ( 1 + u M a n ) 1  

- a "  D I n l , , L - \ r  I ^ \  - l v h n n n l l Y I \ l T V  IGllurJ 

= T ( R m n ( D ) ( 1  -u)Li(&)) 

= R, . (D)M. , ( l+u)L , (a , ) .  (A2.4) 

Therefore M has to commute with all matrices of the representation R of D. From 
the Schur's lemma one gets that M = A 1  if R is irreducible or M is block diagonal 
with each block being itself a multiple of an identity matrix if R is completely reducible. 
So the basis of the irreducible components of R diagonalizes M. Notice that when R 
is irreducible one gets that T fulfills the condition for the product (2.9) to be symmetric. 
From (2.7) we have that [T', T i ]  is an element of D and so is invariant under T. Then 
using (A2.1) 

~ ( [ ( 1  -U)L,(a,A),  ( 1  - 4 L ( a . ) l =  - ( 1 + 4 [ L l ( 4 ,  u(Ll(an))l 

= L A . [ ( l +  u)Lda,), ( 1  + u)Ll(an)l 

= AmAdl+u)[Ll(am), W . 5 )  

So whenever A,,," = [&(a , ) ,  u(Ll(an))] # O  one gets A,h. = - 1 .  This imposes strong 
conditions on the possible eigenvalues of the matrix M. For instance, if A,,2, A,,3 and 
A2,, are non-zero one gets that A ,  = A2 = A, = *i. However there can exist cases where 
for a given m, A,,," = O  for all n. Then A,,, has apparently no relation with the other 
eigenvalues of M. If it turns out to be different from the others the product law (2.9) 
is not symmetric. In the examples of Clifford algebras and those appearing in the 
magic square discussed in this paper we have ( l+u)[Ll ( l ) ,L , (a) ]  = O  for all a c 9 .  
However the eigenvalue of M associated to L,( 1) is equal to all others and consequently 
we do not have problems with the symmetry of the product (2.9). Further investigation 
is necessary to understand if that happens because of some unknown additional 
conditions or if the referred eigenvalue can be rescaled to he equal to all others. 
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